Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(3): 1156-1162, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38105701

RESUMO

Two isostructural Co(Cd)-antimony-oxo tartrate cluster-based compounds with a one-dimensional (1-D) belt-like structure, namely H9.2[Co(H2O)6]{M0.5(H2O)3.5{M'(H2O)4[SbVO6[Co4.2(H2O)5SbIII6(µ3-O)2(tta)6]]}}2·nH2O (M = Co, M' = Co, n = 9 (1); M = Cd0.39/Co0.61, M' = Cd0.24/Co0.76, n = 7 (2); H4tta = tartaric acid), have been synthesized by solvothermal methods. It is noteworthy that the relatively rare mixed-valence Sb(III,V) exists in the structures. The anionic clusters in both compounds appear to be in a sandwich configuration; the top and bottom layers are based on {Sb3(µ3-O)(tta)3} brackets, and the intermediate layer is occupied by {SbVO6[Co4.2(H2O)5]}. The title compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, thermogravimetric analyses, and UV-Vis spectroscopy. We chose compound 2 as a representative to test its proton conductivity, and the results show that the conductivity can reach 1.42 × 10-3 S cm-1 at 85 °C under 98% relative humidity.

2.
Inorg Chem ; 62(45): 18331-18337, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37910803

RESUMO

Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/ß (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.

3.
Molecules ; 28(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903625

RESUMO

Bismuth-halide-based inorganic-organic hybrid materials (Bi-IOHMs) are desirable in luminescence-related applications due to their advantages such as low toxicity and chemical stability. Herein, two Bi-IOHMs of [Bpy][BiCl4(Phen)] (1, Bpy = N-butylpyridinium, Phen = 1,10-phenanthroline) and [PP14][BiCl4(Phen)]·0.25H2O (2, PP14 = N-butyl-N-methylpiperidinium), containing different ionic liquid cations and same anionic units, have been synthesized and characterized. Single-crystal X-ray diffraction reveals that compounds 1 and 2 crystallize in the monoclinic space group of P21/c and P21, respectively. They both possess zero-dimensional ionic structures and exhibit phosphorescence at room temperature upon excitation of UV light (375 nm for 1, 390 nm for 2), with microsecond lifetime (24.13 µs for 1 and 95.37 µs for 2). Hirshfeld surface analysis has been utilized to visually exhibit the different packing motifs and intermolecular interactions in 1 and 2. The variation in ionic liquids makes compound 2 have a more rigid supramolecular structure than 1, resulting in a significant enhancement in photoluminescence quantum yield (PLQY), that is, 0.68% for 1 and 33.24% for 2. In addition, the ratio of the emission intensities for compounds 1 and 2 shows a correlation with temperature. This work provides new insight into luminescence enhancement and temperature sensing applications involving Bi-IOHMs.

4.
Molecules ; 28(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838966

RESUMO

Recently zero-dimensional (0-D) inorganic-organic metal halides (IOMHs) have become a promising class of optoelectronic materials. Herein, we report a new photoluminescent (PL) 0-D antimony(III)-based IOMH single crystal, namely [H2BPZ][SbCl5]·H2O (BPZ = benzylpiperazine). Photophysical characterizations indicate that [H2BPZ][SbCl5]·H2O exhibits singlet/triplet dual-band emission. Density functional theory (DFT) calculations suggest that [H2BPZ][SbCl5]·H2O has the large energy difference between singlet and triplet states, which might induce the dual emission in this compound. Temperature-dependent PL spectra analyses suggest the soft lattice and strong electron-phonon coupling in this compound. Thermogravimetric analysis shows that the water molecules in the lattice of the title crystal could be removed by thermal treatment, giving rise to a dehydrated phase of [H2BPZ][SbCl5]. Interestingly, such structural transformation is accompanied by a reversible PL emission transition between red light (630 nm, dehydrated phase) and yellow light (595 nm, water-containing phase). When being exposed to an environment with 77% relative humidity, the emission color of the dehydrated phase was able to change from red to yellow within 20 s, and the red emission could be restored after reheating. The red to yellow emission switching could be achieved in acetone with water concentration as low as 0.2 vol%. The reversible PL transition phenomenon makes [H2BPZ][SbCl5]·H2O a potential material for luminescent water-sensing.


Assuntos
Temperatura Alta , Hipertermia Induzida , Antimônio , Cloretos , Luminescência , Halogênios
5.
Nano Lett ; 20(9): 6630-6635, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786948

RESUMO

It has been reported that the biological functions of enzymes could be altered when they are encapsulated in metal-organic frameworks (MOFs) due to the interactions between them. Herein, we probed the interactions of catalase in solid and hollow ZIF-8 microcrystals. The solid sample with confined catalase is prepared through a reported method, and the hollow sample is generated by hollowing the MOF crystals, sealing freestanding enzymes in the central cavities of hollow ZIF-8. During the hollowing process, the samples were monitored by small-angle X-ray scattering (SAXS) spectroscopy, electron microscopy, powder X-ray diffraction (PXRD), and nitrogen sorption. The interfacial interactions of the two samples were studied by infrared (IR) and fluorescence spectroscopy. IR study shows that freestanding catalase has less chemical interaction with ZIF-8 than confined catalase, and a fluorescence study indicates that the freestanding catalase has lower structural confinement. We have then carried out the hydrogen peroxide degradation activities of catalase at different stages and revealed that the freestanding catalase in hollow ZIF-8 has higher activity.


Assuntos
Estruturas Metalorgânicas , Catalase , Enzimas Imobilizadas , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...